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ABSTRACT

The linear theory of elasticity is used to investigate axially symmetric wave

propagation in an infinitely long two-layered cylinder. Each material is

taken to be homogeneou- and isotropic. A perfect bond in assumed at the

interface, while the inner and outer boundaries of the composite cylinder

are treated as traction-free. The dispersion detorminant relating phase

velocity and wave number for a harmonic train of waves satisfying these

boundary auditions is presented. The character of the dispersion equation

is investigated analytically and numerically. Stress and displacement

distributions are also pret ented for the numerical example. Comparisons

are made with an approximate solution of the sean* problem obtained by

means of a thin shell theory incorporating thickness-shear deformation of

each layer.
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1. INTRODUCTION

In recent years considerable attention has been focused on multi-

layered sheets. Often a sandwich-type construction is used to lighten the

weight of a sholl structure; in other instances, a protective layowr is bonded

to a shell as, for example, in the case of a re-entry vehicle heat shield or

a rocket nozzle liner. Two-layered thick shell configurations are also used

in solid propelland rocket motors.

This study employs the linear theory of elasticity and treats the propa-

gation of a train of waves in an infinitely long. two-layered cylinder; each

layer is homogeneous and isotropic, Computations Ijased on this solution

are used in an assessment of the accuracy of an approximate two-layered

shell theory that was presented recently.1 This latter the(,ry included the

effects of shear deformation and rotatory inertia. In Ref. 1. a partial

comparison is made between the shell theory and the solutIons obtained in

the present work using the Linear theory of elasticity. Dispersion curves

were compared in detail, and a few displacement distribution comparisons

were made. The present work gives detailed displacement comparisons

over a larger frequency and wave niniber regime and also presents stress

dist ribution comparisons.

The propagation of waves in cylindrically bounded media has been

extensively investigated. Although most of the work has been limited to

cylinders of a single material, it is of interest to recall a few of the more

pertinent references. Pochhanmmr2 and Chree3 first formulated the prob-

Ism for solid cylindrical bars. Ghosh4 formulated the problen) for hollow

cylindrical bars but presented no calculations. Later, Gazis 5 ' 6 , 7 and

Greenspon, .9 made extensive numerical calculations for the vibratirns of a

For a more extensive bibliography dealing with the thin shell literature uf
layered shells see Ref. I.
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hollow cylinder and compared them with several approximate shell theories

sieh as thnmo ni j-arrv~man anti Idirukv| 0 I 12 anal ?awhci a&ne ("nnner. 13 14

Other investigators include Bird and Bird, Hart, and McClure. 16

The vibrations oi a rnuitiiayered cyiinder using the equations oi the lins£i

theory of elasticity have not been extensively investigated. Baltrszkoiiiu,

Guttenberg, and Schreiner1 7 treated simple thickness-shear vibrations of a

two-layered cylinder, and McNiven, Sackman, and Shah 8 treated propagation

of axially symmetric waves in solid bars with an outer fitite laytr. Other than

these, the authors know of no other references treating multilayered cylinders

by the Linear theory of elasticity. 19
Layered half-planes have been extensively treated by geophysicists,

but their work is not particularly of interest here since geophysical earth

models always have one infinite layer. Of the plane two medium problems

with finite layers, the symmetrical sandwich two-dimensional beam is treated

by Saito and Sato, 0 and the asymmetrical two-layered counterpart is treated

by Jones. 21 The last reference is especially apropos since it is shown here

that the wave propagation solution of the two-layered cylinder problem degen-

erates into the solution of the plane two layered mediums problem when the

wavelength becomes sufficiently small compared to the thickness.

The present analysis is formulated in terms of displacement potentials.

A solution in Lhe form of an infinite train of axially symmetric waves is assumed.

To satisfy boundary conditions the phase velocity (or frequency) must depend on

wave number in such a way that an eighth-order determinant vanishes. Due to

its complexity Uttle analytical progress can be made with this dispersion

determinant except in special cases. However, for infinitely long waves the

determinant reduces to a product of two fourth. order determinants whose

frequency roots correspond to vibrations with either purely axial or purely

radial motion. Alternatively, for very short waves the determinant reduces to

a formi given previously by Jones21 for a plane two-layered inediurr. Here the

-z -



phase velocity roots correspond to Rayleigh waves on the free surfaces and

a nnssihle Stnnelev wave at the interface. Foi- waves of interinediate length.

roots of the dispersion determinant are found numerically with a digikal corn-

puir-r prograuua ivas.ir~d sau laoasi. andy..... =trez die -i-tl

responding to these roots are also found for a specific numerical example, and

these are used to estimate the accuracy of the previously mentioned shell theory.

It is concluded that a Tirnoshenko-type shell theory gives good agreeznent

with the present exact solution in a region of applicability encampassing low

enough frequencies and large enough wavelengths. It appears th&t to extend

this region of applicability one must uae a shell theory incorporating th.ckness-

stretch niotio.,. On the basis of the displacerrmnts obtained frorn the exact

theory, a linear distribution of radial motion does not appear to te an

unreasonable first approximation for a thicknes*-stretch theory.

I.

I

A Stonsley wave nmay or may not exist at an interface e4ependin on the
elastic proportiss and densities of the two media (Ref. 19, p. 113).

.0
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U. ANA LYSIS I
Consider a doubly infinite hollow cylinder composed of two homo-

geneous, isotropic, elastic media with Lame constants v, ILI, kip and

•Z and densities p, and p., where subscript I refer. to the outer layer
and oubscript 2 refers to the inner layer. The cylinders are perfectly

bonded together at the interface. Cylindrical coordinates r, 9, and z

are employed. The interface radius is denotad by a, and the thicknesses

are h and h .

Written in term3 of the potential functions o and 4' the equations of

elasticity for motions with torsionless axial symmetry are

S-ztt - tt

where the displacements and stresses may be generated from tbh potential

functionsi by

--O .rz ,-- - (r . ) (2.)

0 r r r r r r

Urr: , r rr r+ ) r ,rz r

Irz A rz +,zz ,rr r )r ,4)

1 - 0 + + e, + , "
zz (r r rr ZZ + 0,9 2  r ra r]
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The termis u and w are the radial and a.xial displacements, respectively, C
and Trr, or' and or are the stress components. The expression for

a'8 is omitted since it is not essential to the problem. All other stress 'U
components are zero and u arid B are the dilatational &M eastivniumina_

Equ.ations (l1-151 nold in either layer provided appropriate values of a, •,

sidee ao varyl tainosaei'asnete l uni' l o

~1 i(kz-uK) 'rev= •;W(r)e , rr = fr i(ks't) etc. (7)

anti the solution to Eqs. (1) is (the factor e (ka'-') has been suppressed for

compactness)

Al A 0 (k r) + BK 0 (ktr)

(8)

ik* C10 (k6r) 4 DK0 (k6r)

Here I and K are modified Beesel function.s of the first and second kind and0 0
zeroth order. The solutions Eq. (8) hold in either medium, provided the

parameters appropriate to each mediuw are used in the equations. Thus there

will be two sets of t's und b'e:

4 C2

2 c c

(cont.)
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62 C 2 6 Z l (9)

whore

CZ 2(i 0)
k

Also there will be two 3eta of constants A, A 2 am BI, B 2 , etc., to be

determined by application of boundary conditions on orr' ar.'ur'and w.

Expressing the displacements and stresses in terms of the solutions, Eq. (8).

one obtains

a' 2 21 l( *r
Fr I A( +6 0(k r -Z t N I + B[(1 62)K O tr) + Za2 K k )

P eI1 +62) (krr)I~kr 1
2 2IClkbrr) 1 DIKk) X I(k6 r) i

( k6 C10(kr lkk~rr+)O

rrz Zik .A . -B.K(kr) +ikz"6[C(z + 6)Il(k6r) - D(I + 6+)KI(k2r)]

u r = k[AIl(ktr) - B*EKI(k~r) + C61 1(k6r) - D6K 1(k6rij (13)

w = ik[A 0 (ktir) + BK 0 (' tr) + C6 10 (k6r) 4 D62K0 (k6r)] (14)

The above expressions are valid in each region provided appropriate values

of Ai, Bi, Ci, Di, (it 6i, Li (i = 1,2)are used.

0
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The boundary conditions for the free vibration problem are S

r~r IF rs 7 4. - I, I

:•rr rz

and

rr rr rt. rz

w() =w(2) at r=a

The superscripts indicate quantities in medliur I or 2. From the boundary

conditioc, Eq. (15). one obtains with the aid of Eqs. (11 -(14) eight linear

hrmnogeneou. equations for the eight constants AV.. . D2 . Since the equations

are long and their formulations are straightforward, the equations are

presented in the Appendix rather than in the text.

To assure nontrivial values of A1 , B1 , .I t . CZ, D2 , the determinant

of their coefficients must be set equal to zero. This constituteu the diepersion

equation. The deterrninant is as follows:

-8-
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The determinant, Eq. (16). ts so complicsted thst little can be done to

nant are obtainable for the limiting casce of very long and very short mves.
For infinite wavelengths, i.e . , k =, the solutions, Lq. ti. became

independent of z, and the determiinant degenorstes to the product of two

fourth-order determinants. A mOQe straightforward derivation of these

fourth-order determinants involves repeating the calculation, with the s

dependence excluded frorr the outset. Then it is clear that one of the fourth-

order determinants corresponds to purely radial motions while the other

corresponds to purely axial motions.

Equating the radial motion determinant to zero one obtains the frequency

equation for simple thickness stretch vibrations:

0

-10-
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8quating the a&ial motion deteeminat to sorea oNb. fte fepllawy 0
equation for axial shear vlhratias

I A

11(4a) NI(4a) JI(g aN ) - N I wZ

0 0 JI (a - h2 )] N N h

IIS

Equation (IS) has been obtained by Baltrakonis, St &l. 17

For very short wavelengths €ompared to the itMerface radius of the

cylinder, it would be expected that propagation al axially symmetric waves in
a two-layered cylinder would differ very 11ttle frtn propagation of straight

created waves in a plane two-layered medium at least for a thin cylinder.

The truth of tlhi, supposition can be ehown analytically in Eq. (16) by re-

placing lot I0 . No. and K 1 by their asymptotic values for large arguments:

10. 1 (x) go aZxl¢

K0 KI(x) -(71x) .-* (19)

(x ý 1)

- IZ-



With these substitutions and a slight redefinition of coefficients in Eqs. (A-1)-

(A-8), the dispersion determinant becomes the same as that given by Jones21

for the plane two-layered problem. As would be expected, the waves degen-

erate into two Rayleigh surface waves, one in each medium, and a possible

Stoneley wave at the interface.

For wavelengths of intermediate size it is difficult to extract much

information about the character of the possible wave propagation solutions

except by considering specific numerical examples. This is done in the

following section where the results of the numerical example are also used

to check the accuracy of the shell theory given in Ref. 1.

0
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Mn. COMPUTATIONS

In order to investigate the character of the wave p•jpopfion Jolwtionhs

governed by ECqs. (A-I)-(A-S) numerical analysis was employed. A program

for the IBM 7094 computer was developed at the Aerospace Corporation for

determining phase velocities (and from them, frequencies) satisfying Eq. (16).

* To facilitate the use of the present soltition for assessing the range of validity

of approximate shell theories, displacement and stress distributions through

the cylinder thickness are calculated as well.

For a given numerical problem valid computer results are obtlan" onl3V

"for a Limited range of wavelengths, The largest ajn ber available for routine

calculation is 108 -. ep (S8), while for large wave numbers the I'm (modified

besael functions of the first kind) are of the order of exp [tkI4)(&iU)). tiere

Sa h I + ha is the total wall thickness of the cylinder. Thus. for valid cow-
puter resulto, kH cannot be much larger than U(H/a). u the exaupge to be

considered here a/H is 30 so that WH < 3 gives a fair estimate td the range

amenable to computations based on Eq. (16). For larger values ot kH the

wavelength is short compared to the radius of the cylinder, the asymptotic

expressions c2 Eq. (19) are appropriate, and satisfactory &umneri-t. results

are obtained using a colIPAuer program based on the plane medium equations

of Ref. l.

V'roperties of the cylinder chosen for detailed numerical study are given

in Table I. This example was used to check the validity of the approximate

shell taeory of Ref. I where dispernion curves were compared for low

frequencies and large wavelengths. Additional dispersion curves are presented

here for the first nine modes of axially symmetric wave propagation. Dis-

tributionlo of displacements and stresses throuj% the thickness of the cylinder

are also presented, and for the first four modes these ate compared with the

distributions p':edirted by the approximate shell theory.

-P
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Table 1. Numerical Propertiesad the Cylinder Studied

Material Constants E, 4.00 X 10'lb/41n. E 2 u 30.40 X 106 bia.Z

vu114 1/3

S(*0.080 Z, 1 4 4

Geometrical Parameters
& h h 2

___ 30__ _ _ -0.3 "R = 0.7 (H-h +4h)

A. DISPERSION CURVES

Dispersion curves for the cylinder of Table I appear in Fils. I and 2. In

both graphs, the abscissa is nondimensional wave number A = kH. In WIS. I the

ordinate is nondinenslonal phaFe velocity 9 - ctip = ,/kBe, and in Fig. 2 it is

nondirnensional frequency 0 = 6H/i*. The reference velocity 1* I + p2 )IZ. $)

The approach of the phase velocity to various limiting values may be

examined in Fig. 1. For instance. foa very long waves, the phase velocity cf

the first mode approximates that of "bar" waves. Also. for very short waves

the phase velocity of the first mode approaches the Rayleigh wave speed of the

slower medium. For the second and higher modes the phase velocity becomes

very large as the wave number is made smaller. Therefore, the long wave-

leanth 4ohsvior of these modes is better examined in the frequency wave number

plot of Fig. ,.

In Fig. 2 it is observed that ciarvee for all the modes except the first have

a finite frequency intercept for sero wave number. These frequencies and the

character of the motion for each of the modes are suninarizod in Table II.

Other features of the curves presented in Fig. 2 include the relative minimum

-l60
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Table 11. Character of the Infinite Wavelength Axially Symmetric
( iVibrati-,,,. of the Two-Layered Cylinder of Table I

Mode F reque ncir Character oe Monon

n vt,ý v,% .. axl&I motion

2 0 Ob6 seri- nodes, radial motion, "ring" vibration

3 . 86 I node, axial motion, thickness shear

4 5.80 2 nowiea, axial motion, thickness shear

5 7. 07 1 node, radial rnotion, thickness stretch

6 I0.2 3 nodes, axial rnotlon, thickness shear

7 11. 1 2 nodes, rad,.Al mction, thickness stretch

8 13. 1 4 nodes, axial motion, thickness shear

9 15.9 5 nodes, axial motion. thickness shear

of mode 6 near A = 2. 5 (this corresponds to zero group velocity) and the close

approach of modes 7 and 8 near A 3 3. I. Tho inset of Fig. 2 shows this close

approach on a magnified scale.

. B. DISPLACFEMENTS

In Ref. I an approximate shell theory iac developod and parti,-'ly compared

with the present exact solutions. Figures 3 throtu.h 7 extend the comparison of

displacements over the entire range of interest. Mut to the elgenvalue nature

of the problem considered the absolute magnitudos of the displacements are

undetermined since multiplication by a nonatant (normalization) factor it

permissible, Therefore, our comparisons are of the shapes of the displace-

ment distributions, the magnitude having been adjusted to make the present

exact theory and the shell theory of Ref. i jg-ee at some convenient value of r.

Solution for both theories of a forced motion problem would permit comparisons

of magnitudes as well. However, examination of the shapes alone of the dis-

placement distributions is of interest since formulations of higher order shell

theories generaill postulate functional forms for the dependence of the dis-

placements on th. thickness coordinate.

-19-
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For the present comparisons the axial displacmeps hae b'm.

normalized to make exact theory mad shell theory 4aakmem•f eq9 to.

C' one at the outer surface. This normalization. of :our@e, fimes defid "e

ratios netween the raail dmiplcomonts oi ine wo m sorime 4"1v arY f

location in the ohoU (except in the case of laftnite wavelength etVOs aM

and radial motion are uncoupled). The radial displsacoem t need aow•bv.

be equal. Rather than present them in such a form we have taket the liaerty

of introducing a different normalizatiou of the radial displacemems. The

radial displacements from both theories are made equal to one at the outer

surface. Such a normalization is necessary for uncouipled radial motioft

and moreover it permits the use of a uniform scale for nearly all the rae"ia

displacement plots. The Information suppressed by this normaliazation I
convention, that is, the ratio of the maximum• outer surface radial displace-

ment to maximum outer surface axial displacement, is presented in Tab). M]l.

In ROf. 1 the first mode axial and radial displacements Jos well as the

dispersion curves) were compared for a limited range of& < 3.0. Figure 3
extends this comparison up to A a 9. 0. Since several curves for 0 < A 9 3.0
were presented in Ref. 1. the curves in Fig. 3 start at A a 5.0. Furthedr,

for A < 3.0, there is little variation of radial displacenent through the I
CU thickness, and the axial displacement differs little from the bi-linear dis-

t ribution assumed in the shell theory. Starting at a t S. 0 the nomualormity

of radial displacement begins to become pronounced, and the &xi displace-

ment becomes increasingly nonlinear.

Previous analyses 1 ' Z1 show that as the wave number becames increas-

ingly large the first mode decays from a flea-ral mode into a Xlaykeob wa•o I
Ln the slower medium. It is apparent in the curves for A% 9.0 tha this

transition is nearly complete. the motion is conceatrsted almost etrely in
the outer medi/m. One might expect certain of the diesoecemea plats to
exhibit other surface or interface wavee. H4awsover. with the parameters asd"
for these two media. calcul&aoms shaw that Itousiey waves do sot exist *A t&e

interface (Ref. 19. p. 113). Theory predicts that for suficiently bio wave

numbers a Rayleigh wave will form in the faster (inner) medium. Such a wave

5-S-



Table IMI. Rastio of Ater Surfacei Maimum as,"
Disaatumad to Oftor f*•b c 6. aMmnAm~w4i l&mum3.asi.mm

Mods Wave umbr At Theory;

5 1. 09 !.370
11460 1.5 3

9 1.630 1.739

2 -0.277 -0.0165

3 -2.621 -0.045[30 0 a
-1 -0.102S -0.0W

3 3 O.56 00096

0 0
4 1 0. $22 0, 0277

3 1.3806 0,.0963

5 3 -11.96 --

3 -21.50

to =a&dWested in a more complicatod way called "terracstng, OW its a-

aideratlon would require investigation of a larger rtese of £ thAe a.M been

umdeftaken for the proeont work.

Tiger@ 4 shows the 0ecced mode displacmanae for a 0. 1. ead 3,

For A a 0, the motim is totally radial, aad so plot oa axial d, plcemeato to

necessary. In crnMrst to the firet mode, the dioplacmnow *urvee desono rate

from the shell theory quite raldWy with a pbaos reversal in the ra4ial displace-

monm sredy apperso at A 1 1. 0. by A x 3.0 the nowmlinrity athe curves to

pronowmed. They are totally dLeoroal from those of the oheU theory. The

-26- 0



radial displacement curves for both A 1. 0 and 3. 0 are evidence that 000o

siderable thickness-stretch deformation is present.

Figures. 5 and~ 4 slnuw in. 4imPlaiuur-w"'Uiu "urn iazv 1;9" -ýWr

They are predoeninantly thickness-shear modes. At A s 0 the MUstle is puroey U
axiai therefore no radial displacement plots appear. In both figures. the

predictions from shell theory compare quite well with the exact solution, at

least for the axial displacements. As in the second mode there is sadneient

thickness-stretch motion present to cause the appearance of nodes in most of

the radial displacement plots. Note in Fig. S that the radial displacements

for A = 3 are plotted to a different scale than the rest.

Figure 7 shows the displacements for the fifth mode, the first mode not

predicted by shell theory. At a = 0 the mo ion is purely radial or thick.ness-

stretch. At least for small wave nunber the shapes of the radial displUcement

curves are such that a linear distribution might offer a good approximation.

Thus, a higher order shell theory admitting a linear distribution of radtal

displacements miaht give fair results for the long wavelength 1rtion of the

fifth mode. Such a shell theory has been presented by Misrky for a sibnle-

layer cylindrical shell. Resuming the examination of Figure 7 one sees that

for finite wave numbers axial motion is present in a form that resembles

0 double -noe thickness shear. However, the &xal• motion shows little tendency

toward linearity, indicating that (the same as in the lower modes) a shell theory

with linear &ia displacement variation through the thickaess will probably not

give a reas•ablo approximation for larger wave numbere.

In summary the comparisons of the displacements for the four lowest

modes shows that the second mode yields the poorest comparison between

exact and shell theory. Although this result is surprising, it could have been

anticipated since the second mnode dispersion curve deviatos more from that

predicted by shelt theory for lower values of A than for the other modvs. It

would appear that the incorporation of thickness-stretch deformations is the

next essential step in improving the shell theory for high frequency, short

w&-TeloIgth use.

-
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c. STnrEsMs
Figures 8 through 11 describe the axial stress (W as) and the sheer stress

S% A* '..,t tha 0%&Ailaiements the absolute masitudo eof the

stresses cannot be determined. The stresses from both the eact and shell

theories were norma.iiuea so that ih kaei .- =1- M-6rz M.O. th outer ae410

or at the interface was set equal to either *1.0. This also fixes the magnitudes

of the shear stresses.

Figurme 8 and 9 show, respectively, the first mode axial and shear

stresses. It is seen in Fig. S that for A S 3 there is good agreement with the

shell theory. However, as A increases the agreement deteriorates. By A = 7

there is only fair agreement, and by A = 9 there is almost none. The latte'r

point is confirmed by the previous observation that by A = 9 there is a Rayleigh

wave formed in the outer med&um. Figure 9 is probably of more interest since

en expected mode of failure oil inltilayared shells is in shear failure of the

bond. The shear stress distrikution follows rougsly the same patterm as the

axial stresses, being close to the shell theory for a s 5 &d being totally

different by A a 9.

Figure 10 shows the second mode stresses. As %night be expected there

is not as good an agreement as with the first mole. By A = 3.0 the shell theory

stress ,2letributions are beginning to diverge sharply froun the exact owes.

rigu.'. II shows third mode strems distributions. There is good agree-

etoM with shell theory only for A s 1. By A % Z there is considerable divergence

in the stvesses, and by A a 3 the exact theory curves bear little resemblance

in shape to those from the shell theory. The fourth mode curves, while not

pressat•d, show a pattern similar to the third mode. It is worth noting that

althot•4b the stress comparison plots are useful for illustrating qualitative

differoncee between the theories the quantitative interpretation can be quite

eensit4ve to the particular normalisation convention that is adopted.

In conclusion it is felt that if any shell theory is to be inproved by the in-

traduction of more dependent variables, thickness-stretch motion is essential.

Vor still higher modes to yield agreement it would be necessary to add additional

*'easar deformations corresponding to warping of initiatly plane cross sectinnu.
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IV. CONCLUSIONS

kit The 6beervatione presented here oz the dynamics of a two-layered

Cylinder are specifically pertinent to axially symmetric motions of a relatively

"i -.-. 11." c-..L4.d.. Th .......... tt. ho,,ovor:. are in no wav restricted to

.' eholU.like geometry. The observations ore also pertinent to the shell theory

of Ref. 1 insofar as it is in agreement with the exact theory.

In many respects the results are similar to those for a homogeneous

cylinder. In the lowest mode very long waves propagate with a finite phase

velocity. Infinite wavelength vibration@ in the second mode occur with a

finite cutoff frequency corremponding to extensional ring vibrations of the

cylinder. Cutoff frequencies for the higher modes correspond to simple

thickness-shear or thickness-stretch vibrations. For small enough wave-

lengths and/or for the higher modes a good description of the motion is obtained

using the simpler equations for the propagation of straight crested waves in a

plar.L ,edium of the same thickness.

However, unlike a homogeneous cflinder a two-layered cylinder does not

have equal surface weve velocities at its inner and outer surfaces. When the

slower Layer is much thinner this leads to a relative maximum at intermediate

wavelength of the first mode phase velocity vs wave number curve. For larger

wave numbers the phase velocity is decreasing, and it thus approaches from

above the Rayleigh wave velocity of the slower medium. This character of the

phase velocity dispersion relation is not matched even qualitatively by a Tnao-

shenko-type sheil theory. Presumably duplication of this behavior would require

a higher order shell theory accommod&ting cross section distortions such that

initioily plane cross sections of either layer no longer remain plane in the

deformed shell.

Some further conclusions pertinent to the development of higher order

shell theories are in order. The displacement and stress distributions presented

* -33-



here reinforce the conclusion that good results are obtained by incorporat-a-

ahear . . .iuriuaiion inuv-Wuay " w layui .t rnww- NOV

it appears that if one desired to extend tha raaw C applicabtilty d the theory

of Ref. I by adding more dependent variables the next logical step would be - -

incorporation of thickness-stretch deformation individually in each layer.

0-

0~
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APPZNDIX

wvlouv ~wwmea wna UtflhT3ThU CXIlffE'I

Equmaious resalting f rov the satisfactaion o f to sutfin mdfbA

boundary cmudticas. Eqs. 15. appear in tbia Appendix *sy am.

A B 1 Q1 10+C 1 RA 1+D S SO (A-1)

A IT 1  B I u + DIw 0 (A-2)

A 11 1P 10 +5 81i&1Q1 + c IN R 10 DI + 1 a A 3&ZQ34o + SIZO ceaz NO

+ D1OO(A-3)

A 1 01AT 10 a 101 u 1 0 + C101 v10 D Ia1lw 1 0 aA~31aTZ0 - 5211LUZ0

+ Cz ftz ao - D f ' l A 4

A a K~1 S I (4+ C 1 61 1 1~ -L D IGI K I Otba)

Aa 2E21iks &) - '52" 2K I OLa 4 a) C z 6 zI I za) - D z 6 1Kiz (AS)

.1 0 k.a +h otbt1  + D 61Ko~~&A I1 l a+ I 0Ot0 &+1 1 0 1

fzokaZa) + BK 0fkZa) + CZG'-I0 Jk6 a) + D 62 K OckSZ) (A-6)

A ZI+ SaIZ + CaDt, + DOZZ 0(A7



AITZZ IBUZZ I~ ICZWZ 0-4112 3014

ftuo *0 leftower Combinations of SeseeI fIetwW h bpoo bl~t*

PUa (I + 6 )1oe) 0X.

1 i+ 6f)Ke..,aJ4 +4-~

(k& I &h~) 3
% i 62 [KoOt 6is) 4 r j2  (A-9)

TU1ja ad 1K Ik. 1 a)0

6~ ,(1 + 63)K1 *6 1

alwe i takes an values I a34 Z. The subscript jtakes an values 1. 0. and 2.

which correspoinds to .-wuitiplying the &g-uments by I + %t1. and I - k

r~espectively; e.g.s.

4i 6Zilmka(1 X) - ZYkjL +k)

14.3. 114) a.d kz %aN/).
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The linear theory of elasticity is used to inwestigate axially symmetric wave
propagation in an infinitely long two-layered cylinder. Each. material is
taken to be homogeneous and isotropic.- A perfect band is as sumied at the
interface. while the inner and outer boundaries of the composite cylinder
are treated as traction-trute. The dispersion determinant relating phase
velocity and wave mnuber for a, harmonic train of waves satisfyivS these
boundary conditione is presented. The character of the dispersion equation
L. investigated analytically and numerically. Stress and displacement
distributions are also presented for the numerical example. Comparisons
are made with an appoximate solution of the same problerm obtained by
means of a thin *hall theory incorporating thicnegse-eshear deformationh of
each layer.
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